Inhibition of CD47 Effectively Targets Pancreatic Cancer Stem Cells via Dual Mechanisms.
نویسندگان
چکیده
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the exocrine pancreas with unmet medical need and is strongly promoted by tumor-associated macrophages (TAM). The presence of TAMs is associated with poor clinical outcome, and their overall role, therefore, appears to be protumorigenic. The "don't eat me" signal CD47 on cancer cells communicates to the signal regulatory protein-α on macrophages and prevents their phagocytosis. Thus, inhibition of CD47 may offer a new opportunity to turn TAMs against PDAC cells, including cancer stem cells (CSC), as the exclusively tumorigenic population. EXPERIMENTAL DESIGN We studied in vitro and in vivo the effects of CD47 inhibition on CSCs using a large set of primary pancreatic cancer (stem) cells as well as xenografts of primary human PDAC tissue. RESULTS CD47 was highly expressed on CSCs, but not on other nonmalignant cells in the pancreas. Targeting CD47 efficiently enhanced phagocytosis of a representative set of primary human pancreatic cancer (stem) cells and, even more intriguingly, also directly induced their apoptosis in the absence of macrophages during long-term inhibition of CD47. In patient-derived xenograft models, CD47 targeting alone did not result in relevant slowing of tumor growth, but the addition of gemcitabine or Abraxane resulted in sustained tumor regression and prevention of disease relapse long after discontinuation of treatment. CONCLUSIONS These data are consistent with efficient in vivo targeting of CSCs, and strongly suggest that CD47 inhibition could be a novel adjuvant treatment strategy for PDAC independent of underlying and highly variable driver mutations.
منابع مشابه
Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanism
1 Stem Cells & Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain 2 Centre for Stem Cells in Cancer & Ageing, Barts Cancer Institute, a CR-UK Centre of Excellence, Queen Mary University of London, UK 3 Gastrointestinal Cancer Clinical Research Unit, Clinical Research Programme, CNIO 4 Liverpool Cancer Research UK Centre, University of Live...
متن کاملCancer Therapy: Preclinical Inhibition of CD47 Effectively Targets Pancreatic Cancer Stem Cells via Dual Mechanisms
Purpose: Pancreatic ductal adenocarcinoma (PDAC) is a cancer of the exocrine pancreas with unmet medical need and is strongly promoted by tumor-associated macrophages (TAM). The presence of TAMs is associated with poor clinical outcome, and their overall role, therefore, appears to be protumorigenic. The "don't eat me" signal CD47 on cancer cells communicates to the signal regulatory protein-a ...
متن کاملApoptosis induction and proliferation inhibition by silibinin encapsulated in nanoparticles in MIA PaCa-2 cancer cells and deregulation of some miRNAs
Objective(s): Silibinin, as an herbal compound, has anti-cancer activity. Because of low solubility of silibinin in water and body fluids, it was encapsulated in polymersome nanoparticles and its effects were evaluated on pancreatic cancer cells and cancer stem cells.Materials and Methods: MIA PaCa-2 pancreatic cancer cells were treated ...
متن کاملCD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth
CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) f...
متن کاملDisruption of SIRPα signaling in macrophages eliminates human acute myeloid leukemia stem cells in xenografts
Although tumor surveillance by T and B lymphocytes is well studied, the role of innate immune cells, in particular macrophages, is less clear. Moreover, the existence of subclonal genetic and functional diversity in some human cancers such as leukemia underscores the importance of defining tumor surveillance mechanisms that effectively target the disease-sustaining cancer stem cells in addition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2015